*Mathematical Methods in the Applied Sciences*Ground state solution for a periodic p\&q-Laplacain
equation involving critical growth without the Ambrosetti-Rabinowitz
condition

We study the ground state solutions for the following
p\&q-Laplacain equation \[
\left\{
\begin{array}{ll}
-\Delta_pu-\Delta_qu+V(x)
(|u|^{p-2}u+|u|^{q-2}u)=\lambda
K(x)f(u)+|u|^{q^*-2}u,~x\in\R^N,
\\ u\in
W^{1,p}(\R^N)\cap
W^{1,q}(\R^N), \end{array}
\right. \] where
$\lambda>0$ is a parameter large enough,
$\Delta_ru =
\text{div}(|\nabla
u|^{r-2}\nabla u)$ with
$r\in\{p,q\}$ denotes
the $r$ Laplacian operator, $1

14 Aug 2021

14 Aug 2021

14 Aug 2021

20 Nov 2022

27 Jan 2023

27 Jan 2023

29 Jan 2023

29 Jan 2023

29 Jan 2023

29 Jan 2023

08 Feb 2023